1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
| import torch
import yaml
from pathlib import Path
def main():
# Load config
with open("configs/experiment.yaml") as f:
config = yaml.safe_load(f)
# Setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Data
train_dataset = TextDataset(Path(config["data"]["train"]), tokenizer)
val_dataset = TextDataset(Path(config["data"]["val"]), tokenizer)
train_loader = create_dataloader(train_dataset, config["batch_size"], True)
val_loader = create_dataloader(val_dataset, config["batch_size"], False)
# Model
model = TransformerClassifier(**config["model"]).to(device)
# Optimizer
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config["lr"],
weight_decay=config["weight_decay"]
)
scheduler = OneCycleLR(
optimizer,
max_lr=config["lr"],
epochs=config["epochs"],
steps_per_epoch=len(train_loader)
)
criterion = nn.CrossEntropyLoss()
scaler = GradScaler()
best_val_loss = float("inf")
for epoch in range(config["epochs"]):
train_loss = train_epoch(
model, train_loader, optimizer,
criterion, scaler, device, scheduler
)
val_loss, val_acc = validate(model, val_loader, criterion, device)
print(f"Epoch {epoch}: train_loss={train_loss:.4f}, "
f"val_loss={val_loss:.4f}, val_acc={val_acc:.4f}")
if val_loss < best_val_loss:
best_val_loss = val_loss
save_checkpoint(model, optimizer, scheduler, epoch, "best_model.pt")
if __name__ == "__main__":
main()
|